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1. Introduction 

Behind-armor debris (BAD) is a major cause of damage in military vehicles that have been 
perforated by a penetrator, bullet, or fragment.  The ability to predict the debris field resulting 
from attack by such a threat is critical to assessing and improving the survivability of our tactical 
systems.  The U.S. Army Research Laboratory (ARL) has been working to develop the 
capability to numerically model the BAD resulting from armor perforation. 

Modeling of the debris field has historically been done by statistically analyzing data from 
carefully controlled experiments.  The difficulty of collecting this information makes it an 
expensive and lengthy process.  Supplementing these experiments with numerical simulations is 
a natural synergy, but it has not yet been successfully exploited because previous computer 
systems were unable to cope with the daunting size of the problems. 

With the addition of the latest computers to the ARL Major Shared Resource Center, numerical 
modeling of these experiments is now within reach.  The Eulerian shock physics code CTH was 
chosen to model the experiment.  The experiment, modeled as a demonstration of the technique, 
consists of a 30-mm armor-piercing discarding sabot round perforating a 1-in-thick armor steel 
plate.  The resulting BAD impacts a large (2- × 2-ft), thin (1/32-in) mild steel witness plate 
placed 2 ft behind the armor.  Perforations made in the witness plate by the debris are measured, 
and conclusions drawn about the size, mass, spatial distribution, and velocity of the debris field.  
This is painstaking work, but it results in a reasonably accurate characterization of the debris 
field. 

The difficulty in modeling this experiment arises primarily from two factors.  First, the 
experiment is inherently three-dimensional in nature, and, thus, any simulation of the experiment 
must be done in three dimensions.  The second factor is the wide range of length scales:  the 
1/32-in witness requires a fine grid resolution that, when extended over the 2-ft air space and 
large area of the witness, requires one half of a billion cells for a relatively coarse resolution (two 
cells through the thickness of the witness plate).  Compounding the problem, the small cell size 
requires a small integration time-step, so a huge number of computation cycles are required to fly 
the debris through the 2-ft airspace. 

Extracting the necessary information from the CTH calculation, however, is not a 
straightforward process.  CTH uses structured meshes with cell-centered values for material 
volume fraction, velocity, pressure, etc. (1).  The mass and velocity of individual fragments is 
ultimately useful.  Fortunately, the functionality available in the interdisciplinary computing 
environment (ICE) makes it possible to create a system capable of extracting the necessary 
information from CTH to be used as input to vulnerability and survivability codes. 
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2. Manipulating CTH Data 

Both adaptive mesh refinement (AMR) and non-AMR (flat mesh) can generate output in several 
proprietary formats.  To enable post processing via Spymaster (an internal system to CTH which 
will be discussed later), CTH can produce data files in a special spyplt format.  On parallel 
platforms, CTH will typically save one spyplt file per processor used in the calculation.  Since 
producing CTH calculations regularly requires tens or hundreds of millions of cells in the 
computational mesh, the amount of data saved to disk can be enormous.  In a flat-mesh 
calculation, the domain is decomposed one piece per processor.  In an AMR calculation, each 
processor can potentially be assigned many small blocks, which are refined based on some  
user-defined criteria. 

Flat-mesh blocks are assigned to processors so that their interiors overlap by one grid cell.  Each 
processor could potentially have a similar computational block; however, each block may not be 
exactly the same size.  AMR blocks, however, are all topologically identical (e.g., 12 × 12 × 12) 
but are geometrically refined dynamically based on some user-defined criteria.  As shown in 
figure 1, each processor is assigned one or more blocks representing a section of the 
computational domain on which it is to operate. 

 
   

  Data for 
Processor 0  

Data for 
Processor 1

Data for 
  Processor 1

  

 Data for  
Processor 1  

Flat-Mesh Decomposition AMR Mesh Blocks 
 

Figure 1.  Processor assignment for flat-mesh vs. AMR CTH. 

 
For each material defined in the calculation, CTH calculates a per cell scalar for “volume 
fraction.”  It is the fraction of the volume of the cell that is occupied by that material.  For 
example, if a material’s volume fraction for a cell is 0.51, the cell is 51% filled by that material.  
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By utilizing this quantity, it is possible to extract surfaces from the entire mesh that correspond 
to the fragments of BAD.  It is the extraction of these isosurfaces that is at the heart of producing 
the desired mass and velocity information. 

Producing realistic fragments from physics-based simulations is an active area of study.  
Researchers at Lawrence Livermore National Laboratory (2) have demonstrated with a 
Lagrangian code the effectiveness of providing a statistical distribution of fracture properties in 
simulations.  Here the technique is incorporated into the Eulerian code CTH and applied to 
modeling this ballistic experiment.  In a conventional CTH simulation, all cells containing target 
material have the same set of fracture model parameters, so all fail in the same way.  This effect 
is shown graphically in figure 2a, which shows the bulge on the rear of the target plate just prior 
to the penetrator breaking through.  Damage is shown in this figure by coloring—blue is no 
damage, red is fully damaged.  Notice the uniformity and symmetry of the damage in the bulge.  
The new model installed in CTH provides a spatially random distribution of values for the initial 
failure strain (i.e., the failure stain under initial conditions of pressure, temperature, and strain-
rate), although in the aggregate, its population is Weibull-distributed.  This causes nonuniform, 
stochastic failure of the armor plate, as shown in figure 2b.  The resultant BAD field is strongly 
dependent on the nature of the Weibull distribution of the fracture parameter, as quantified by the 
Weibull modulus, which is a user-supplied input to CTH.  As an analogy, think of the Weibull 
modulus as determining the standard deviation of the distribution of the fracture model parameter.  
A Weibull modulus of 2 provided the results shown in figure 2b.  Comparing figures 2a and 2b 
shows that a much more realistic fragmentation of the target is obtained with the distributed 
fracture parameter approach. 

(a) (b) 
m = 0 m = 2 

 
Figure 2.  Bulge of the rear of the plate showing damage just prior to 

breakout (60 μs after impact) for (a) m = 0 and (b) m = 2.
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CTH has recently added an analysis facility called Spymaster.  Spymaster is capable of 
generating images of the calculation during run-time.  It can be accessed during the execution of 
the original calculation or as a postprocessing step.  Spymaster is designed to generate images, 
but we have modified it to produce polygonal output of isosurfaces, which can then be further 
processed to produce the desired information. 

Once the isosurfaces have been generated, as in figure 3, the algorithm for extracting mass and 
velocity of the debris field proceeds as follows: 

• Determine individual debris particles by extracting connected regions. 

• Determine average X,Y, and Z velocity for each region. 

• Determine the volume of each region using an algorithm based on the discrete form of the 
divergence theorem. 

• Multiply by material density to determine mass. 

• Sort regions by volume. 

• Format output. 

 

 

Figure 3.  Isosurface of BAD calculation. 

 
All of these functions are accomplished via a single Python script.  By using the ICE, this script 
is able to access large chunks of functionality from a relatively small amount of code.  For 
example, determining the volume of a connected region is accomplished in less than 10 lines of 
scripting code. 
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3. OnceWare 

Developing narrowly targeted, specific applications like this BAD quantifier is a regular 
occurrence.  We refer to these applications as OnceWare.  These are applications that are quickly 
developed, used for very specific applications, and are never intended to be general purpose 
tools.  To facilitate the development of such applications, we take advantage of the ICE. 

ICE is a collection of software tools—some open source, some locally developed—that facilitate 
the development of interdisciplinary applications (3).  Some of the more notable components are 
the Python programming language, the Hierarchical Data Format (HDF5), the Visualization 
Toolkit (VTK), and the eXtensible Data Model and Format (XDMF). 

XDMF implements a common data hub for both codes and tools.  The common data hub is both 
a data model and data format.  That means the information about the data values and how the 
data are used are available.  Known as the XDMF, the data hub utilizes Extensible Markup 
Language (XML) and HDF5 to provide a flexible, yet powerful, active data hub (figure 4).  In 
addition to disk files, the physical transfer of data is handled by a distributed shared memory 
system called Network Distributed Global Memory (NDGM).  NDGM provides access to a 
virtual, contiguous buffer through a client-server architecture (4).  A widely used HDF5 is used 
to provide an NDGM buffer with a structure.  The common data hub facility provided by HDF5 
and NDGM is effectively used to manage data between different software systems and 
effectively used to coordinate activities between different codes.  This enables researchers and 
engineers to quickly couple production-level parallel high-performance computing codes and 
tools from different disciplines to assemble complex systems from large chunks of functionality. 

Producing XDMF data from CTH requires the addition of commands to Spymaster.  This is 
accomplished by interfacing with the C-like language interpreter, S-Lang, which Spymaster uses 
to parse input commands.  Since this requires additional C code to be added to Spymaster and 
linkage with the XDMF library, a new executable (IceSpy) is produced that understands all 
normal Spymaster commands plus additional commands used to produce XDMF. 

The most notable of these additional commands is XdmfIsoAllMaterial( scalar, mirror).  This 
command utilizes the Spymaster internal isosurface generator to produce a surface for each 
material in the calculation where the material volume fraction is 0.51.  The scalar is used to 
interpolate a value such as pressure on the surface, while mirror will reflect the surface across 
planes of symmetry.  Instead of the isosurface generator producing a two-dimensional image, 
however, this new command produces an XDMF file with the polygons for the surfaces, which 
can then be imported into EnSight or ParaView.
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Figure 4.  The eXtensible data model and format. 

Additional commands allow finer control-like producing surfaces of scalars other than material 
volume fraction.  While useful by themselves, adding additional commands requires recompiling 
and relinking of the IceSpy executable.  An important limitation is that the internal Spymaster 
isosurface generator will only interpolate one scalar value onto the surface at a time.  This means 
that in order to color the surface by more than one scalar we must take another approach. 

4. Embedding an Interpreter 

Python is a heavily used, interactive, object-oriented, programming scripting language (5).  
Projects like SPaSM (Scalable Parallel Short-range Molecular-dynamics) (6) and VTF (Virtual 
Test Facilty) (7) have shown that a Python interpreter can be embedded in a parallel high-
performance computing code to provide a flexible interface to a wide variety of functionality.  
Using this concept, we embedded a Python interpreter into the IceSpy executable.  The  
following two additional commands have been added to IceSpy to access Python from CTH:  
XdmfPythonExecFile( filename ) and XdmfPythonExec( string ).  These commands initialize the 
Python interpreter and execute Python commands from a file or a string, respectively. 

A Python interpreter is fairly thin and has limited functionality beyond the basic language 
constructs.  Additional functionality is obtained by importing external modules.  For example, 
importing the xml.dom module allows Python scripts to easily parse XML documents.  The VTK 
has been wrapped to allow a Python script to access its functionality.  Once imported, the VTK 
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module allows the user to create VTK objects and call methods from python; no code needs to be 
recompiled or linked. 

The same has been done for the CTH data.  Once in the Python interpreter, the script can access 
CTH data via classes and methods that are loaded from a module.  Methods to retrieve saved 
variable names and values are provided.  One of the most important of these methods generates a 
VTK rectilinear grid from a CTH block (AMR or flat).  By importing VTK functionality, the 
script can then use the full power of the VTK system (8) to perform a myriad of visualization 
functions on the CTH data.  Since the compute-intensive portion of this processing is 
accomplished in the underlying C or C++ code, Python actually adds very little computational 
overhead while providing enormous flexibility. 

5. Connectivity and Volume 

Once we have polygonal isosurfaces of the debris field, the next step is to determine the 
individual particles.  The first step in this process is to merge points in the triangular mesh that 
are within a certain tolerance.  This is necessary since the isosurfaces were generated in parallel; 
coincident points may have been generated by two or more processors. 

To determine the individual particles, we start with the first triangle and find all of the triangles 
that share one or more nodes.  We continue finding connected triangles, removing these from the 
candidate list.  Once there are no more triangles that share nodes, the group of triangles is 
considered to be a discrete object, and an ordinal scalar value for region number is added to those 
triangles. 

Determining the average velocity of this region is trivial, but the same cannot be said for 
determining the volume.  To find the volume, we use an algorithm based on the discrete form of 
the divergence theorem, which is described by Alyassin et al. (9).  It is implemented in the VTK 
filter, vtkMassProperties, which is part of the ICE environment. 

Of all of the factors that can limit the accuracy of the volume, the most significant is the original 
resolution of the CTH mesh.  Consider a perfect sphere—without proper resolution, the resulting 
faceted shape may significantly underpredict the particle volume.  So far, this has not been a 
major problem.  The total mass of all of the particles is determined at each iteration.  The 
computed mass is generally within 1% of the initial (t = 0) mass. 

As the final output is formatted for input to other codes, particles below a user-determined 
threshold are filtered out.  For every iteration, there is one line per particle that lists its centroid, 
volume, mass, and velocity. 

As shown in figure 5, the shape of the distribution curves between experiment and simulation are 
similar.  Work further continues to match the actual masses.  This work has shown that 
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Figure 5.  CTH prediction of mass distribution of fragments compared to experimental results.  
Here the statistical fracture technique is applied to only the target.  This figure indicates 
that with the proper choice of Weibull modulus, and with the statistical model applied to 
both the target and the penetrator, a more realistic debris field can be obtained than that 
which arises from the classic method of using a constant parameter (m = 0). 

 
simulating BAD experiment is now within the ability of current assets, and simulations can be 
successfully exploited to supplement the expensive experiments.  Furthermore, the new 
capabilities of statistical fracture and automatic fragment quantification make the technique more 
useful. 

 

6. Conclusion 

This system has been used to quantify the BAD field calculated from a CTH simulation.  This is 
a practical system to accomplish this task in a fairly general fashion.  We are able to access large 
chunks of functionality from a high-level scripting language with a small amount of code 
through the use of ICE.  The fragment extraction tools within ICE are one important piece in the 
process of using physics-based simulations to improve vehicle design. 

We are currently working to improve the performance, ease of use, and accuracy of the process 
and to improve the systems interoperability with external codes used to assess vehicle 
vulnerability and personnel risk.
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